
Teaming network device
Put multiple physical ethernet devices into one logical one

Red Hat

Jǐŕı Ṕırko (jpirko@redhat.com)



Generic ideas about (ethernet) link aggregation

Link layer (2nd OSI)

Combining multiple network connections in parallel

Main motivations

increase throughput beyond what a single line can provide
provide redundancy (failover)

802.3ad, LACP + many proprietary standards

Current Linux implementation is bonding driver



link aggregation setup examples



Bonding driver

Introduced in 2000

Huge and messy, therefore buggy

All logic is in kernel (monolith)

Does what it should not do (ARP link validation, 802.3ad, ...)

Too many config interfaces

12200 lines

Not fixable due to backward compatibility concerns



What the ”Team device” is about?

Think of it as of bonding-new generation

Basically it’s tool to implement various kinds of link
aggregation

Alternative names would might be ”trunking” or ”link
bundling” or ”Ethernet/network/NIC bonding”

”teaming” was chosen because it’s nicest

The goal of team device is to supersede bonding functionality
and then kill it eventually



Team device overview

Team is coming with modular approach

User-space based controlling

Minimum of the code is in kernel

”Puppet”

Control logic is implemented in user-space daemon

”Puppeteer”

Enslaved network interfaces are called ”ports”



Team device architecture (class-like-view)



Team device architecture (instance-like-view)



team driver (kernel)

Only necessary fast-path code. (1400 lines)

Netlink communication (generic Netlink). (600 lines)

Team ”modes”

One mode, one kernel module
Determine basic low-level behaviour
Well defined API between team core and mode code
round-robin, active-backup, ... easy to add more



team driver implementation

RCU-locking (multiple incoming/outgoing packets can go in
parallel with setting up the device)

Exploits rx handler on RX path to intercept packets

Uses dev queue xmit() to pass packets to NIC driver on TX
path

netdevice notifier events are passed via Netlink

Option infrastructure - for easy add options to modes



libteam

Team generic Netlink wrap-up

Uses libnl (genl, rtnl)

Exports API to user for controlling kernel team driver instance

Allows to register ”handlers” for watching team driver
instance events

Python binding available + more bindings are going to be
present



teamd

Uses libteam, libdbus, jansson, libdaemon

One instance puppet-controls one team driver instance

On startup it creates team driver instance (team interaface)

Config file in JSON format

Runners

One and only one has to be selected
Determine behaviour (”pulling strings, getting punches”)
Either part of teamd (C) or separate application (D-BUS)

Active-backup (link monitoring, ARP/NA monitoring)
802.3ad
Multiple switch load-balancing
...whatever whoever wants/implements...

Easy to use:

teamd -f team0.conf



teamd config example 1

team0.conf

{
"device": "team0",
"runner": "roundrobin",
"ports": {"eth1": {}, "eth2": {}}

}



teamd config example 2

team0 abl.conf

{
"device": "team0",
"runner": "activebackup_linkmon",
"ports": {

"eth1": {
"prio": -10,
"sticky": true

},
"eth2": {

"prio": 100
}

}
}



Extension possibilities

kernel extension

Add mode

user-space extension

Make libteam based application
Make libteam python binding based application
Add teamd runner

Preferred
Might be written in language of your choice (D-BUS API)



Advantages comparing to bonding

Extensibility. Anyone can easily add features/change
behaviour

Better system stability (daemon crash is always better than
kernel panic/memory corruption etc.)

Better debugging posibilities.



Status/get involved

Kernel bits are present in 3.3

libteam (including teamd) packaged in Fedora 16
(updates-testing) and Rawhide

Infrastructure is 90% done, more functionality implementation
pending (802.3ad, load-balancing, ARP/NA monitoring)

Developers/testers wanted

http://www.libteam.org

#teamdev at freenode

libteam@lists.fedorahosted.org



The end.
Thanks for listening.


